/embeddings
Quick Start
Python
from openai import OpenAI
client = OpenAI(
api_key="YOUR_API_KEY",
base_url="https://api.haimaker.ai/v1"
)
response = client.embeddings.create(
model="openai/text-embedding-ada-002",
input=["good morning from haimaker"]
)
print(response.data[0].embedding)
cURL
curl https://api.haimaker.ai/v1/embeddings \
-H "Content-Type: application/json" \
-H "Authorization: Bearer YOUR_API_KEY" \
-d '{
"model": "openai/text-embedding-ada-002",
"input": ["good morning from haimaker"]
}'
Async Usage
from openai import AsyncOpenAI
import asyncio
client = AsyncOpenAI(
api_key="YOUR_API_KEY",
base_url="https://api.haimaker.ai/v1"
)
async def get_embedding():
response = await client.embeddings.create(
model="openai/text-embedding-ada-002",
input=["good morning from haimaker"]
)
return response
response = asyncio.run(get_embedding())
print(response.data[0].embedding)
Supported Models
OpenAI Embedding Models
from openai import OpenAI
client = OpenAI(
api_key="YOUR_API_KEY",
base_url="https://api.haimaker.ai/v1"
)
# text-embedding-3-small
response = client.embeddings.create(
model="openai/text-embedding-3-small",
input=["good morning from haimaker"],
dimensions=256 # Optional: specify dimensions for text-embedding-3 models
)
# text-embedding-3-large
response = client.embeddings.create(
model="openai/text-embedding-3-large",
input=["good morning from haimaker"]
)
# text-embedding-ada-002
response = client.embeddings.create(
model="openai/text-embedding-ada-002",
input=["good morning from haimaker"]
)
| Model Name | Model ID |
|---|---|
| text-embedding-3-small | openai/text-embedding-3-small |
| text-embedding-3-large | openai/text-embedding-3-large |
| text-embedding-ada-002 | openai/text-embedding-ada-002 |
Cohere Embedding Models
from openai import OpenAI
client = OpenAI(
api_key="YOUR_API_KEY",
base_url="https://api.haimaker.ai/v1"
)
response = client.embeddings.create(
model="cohere/embed-english-v3.0",
input=["good morning from haimaker"]
)
| Model Name | Model ID |
|---|---|
| embed-english-v3.0 | cohere/embed-english-v3.0 |
| embed-english-light-v3.0 | cohere/embed-english-light-v3.0 |
| embed-multilingual-v3.0 | cohere/embed-multilingual-v3.0 |
| embed-multilingual-light-v3.0 | cohere/embed-multilingual-light-v3.0 |
| embed-english-v2.0 | cohere/embed-english-v2.0 |
| embed-english-light-v2.0 | cohere/embed-english-light-v2.0 |
| embed-multilingual-v2.0 | cohere/embed-multilingual-v2.0 |
Voyage AI Embedding Models
from openai import OpenAI
client = OpenAI(
api_key="YOUR_API_KEY",
base_url="https://api.haimaker.ai/v1"
)
response = client.embeddings.create(
model="voyage/voyage-01",
input=["good morning from haimaker"]
)
| Model Name | Model ID |
|---|---|
| voyage-01 | voyage/voyage-01 |
| voyage-lite-01 | voyage/voyage-lite-01 |
| voyage-lite-01-instruct | voyage/voyage-lite-01-instruct |
Mistral AI Embedding Models
from openai import OpenAI
client = OpenAI(
api_key="YOUR_API_KEY",
base_url="https://api.haimaker.ai/v1"
)
response = client.embeddings.create(
model="mistral/mistral-embed",
input=["good morning from haimaker"]
)
| Model Name | Model ID |
|---|---|
| mistral-embed | mistral/mistral-embed |
Google Gemini Embedding Models
from openai import OpenAI
client = OpenAI(
api_key="YOUR_API_KEY",
base_url="https://api.haimaker.ai/v1"
)
response = client.embeddings.create(
model="gemini/text-embedding-004",
input=["good morning from haimaker"]
)
| Model Name | Model ID |
|---|---|
| text-embedding-004 | gemini/text-embedding-004 |
Vertex AI Embedding Models
from openai import OpenAI
client = OpenAI(
api_key="YOUR_API_KEY",
base_url="https://api.haimaker.ai/v1"
)
response = client.embeddings.create(
model="vertex_ai/textembedding-gecko",
input=["good morning from haimaker"]
)
| Model Name | Model ID |
|---|---|
| textembedding-gecko | vertex_ai/textembedding-gecko |
| textembedding-gecko-multilingual | vertex_ai/textembedding-gecko-multilingual |
| textembedding-gecko-multilingual@001 | vertex_ai/textembedding-gecko-multilingual@001 |
| textembedding-gecko@001 | vertex_ai/textembedding-gecko@001 |
| textembedding-gecko@003 | vertex_ai/textembedding-gecko@003 |
| text-embedding-preview-0409 | vertex_ai/text-embedding-preview-0409 |
| text-multilingual-embedding-preview-0409 | vertex_ai/text-multilingual-embedding-preview-0409 |
AWS Bedrock Embedding Models
from openai import OpenAI
client = OpenAI(
api_key="YOUR_API_KEY",
base_url="https://api.haimaker.ai/v1"
)
response = client.embeddings.create(
model="bedrock/amazon.titan-embed-text-v1",
input=["good morning from haimaker"]
)
| Model Name | Model ID |
|---|---|
| Titan Embeddings - G1 | bedrock/amazon.titan-embed-text-v1 |
| Cohere Embeddings - English | bedrock/cohere.embed-english-v3 |
| Cohere Embeddings - Multilingual | bedrock/cohere.embed-multilingual-v3 |
HuggingFace Embedding Models
from openai import OpenAI
client = OpenAI(
api_key="YOUR_API_KEY",
base_url="https://api.haimaker.ai/v1"
)
response = client.embeddings.create(
model="huggingface/microsoft/codebert-base",
input=["good morning from haimaker"]
)
| Model Name | Model ID |
|---|---|
| microsoft/codebert-base | huggingface/microsoft/codebert-base |
| BAAI/bge-large-zh | huggingface/BAAI/bge-large-zh |
Input Parameters
Required Fields
model: string - ID of the model to use (e.g.,openai/text-embedding-ada-002)input: string or array - Input text to embed, encoded as a string or array of strings
Optional Fields
dimensions: integer - The number of dimensions for the output embeddings. Only supported in text-embedding-3 and later models.encoding_format: string - The format to return the embeddings in. Can be"float"or"base64". Defaults to"float".user: string - A unique identifier representing your end-user.
Output Format
{
"object": "list",
"data": [
{
"object": "embedding",
"index": 0,
"embedding": [
-0.0022326677571982145,
0.010749882087111473,
...
]
}
],
"model": "text-embedding-ada-002-v2",
"usage": {
"prompt_tokens": 10,
"total_tokens": 10
}
}